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Abstract

This paper examines the effect of curved boundary continuity on finite element simulations. Quartic C0 continuous and G1 contin-
uous meshes with curved boundaries are created from CAD geometry. These C0 continuous and G1 continuous surface triangles
are constructed using Bézier triangles and triangular Gregory patches respectively. Curved tetrahedra are constructed using a shape
blending with tetrahedral mapping. The curved meshes are solved on using a high-order finite element method. The effect of
surface continuity on solution accuracy is quantified for a simple fluid problem in three dimensions.
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1. Introduction

In order to fully realize the benefits of high-order methods, the curved portions of the geometric domain must be
properly represented by the computational mesh. Previous analyses using the relation of approximation theory to the
convergence of the error in the energy norm have indicated that numerical solutions will converge as the geometric
approximation of the mesh is within one order of that used in the finite element basis [1]. Thus, for proper solution
accuracy, the mesh edges and faces representing curved domain geometry must be curved and provide a sufficient
order of geometry approximation to prevent the loss of convergence and accuracy due to the geometric approximation
[2–5].

Early attempts to accurately represent curved domains for finite element simulations date back to the 1970s when
the isoparametric element approach was introduced to solid mechanics applications [6]. With the rapid development
of the Computer-Aided Geometric Design (CAGD) technology, researchers started to work on integration of CAD
technology for geometrical representation with finite element analysis methods. Schramm and Pilkey [7] used Non-
Uniform Rational B-Splines (NURBS), the industry standard for geometric modeling, for geometry to implement
transfinite elements and applied it to shape optimization. A number of different techniques have been proposed in
recent years to generate curvilinear meshes based on polynomial mappings and optimal nodal placement [8–11].
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Fig. 1. Control points for fourth-order C0 (left) and G1 triangles (right).

More recent work on tetrahedral meshes by Sevilla et al [12] have used NURBS to create a NURBS-enhanced FEM
method with NURBS based elements near the CAD model boundary and standard polynomial based finite elements
for the interior, demonstrating its improvement on several problems with Maxwell’s equations.

Alongside this research, in the past ten years extensive research has been on isogeometric analysis, integrating
CAD and finite element methods using the same representation for both the geometry and the finite element solution
has been carried out. First introduced by Hughes et al in 2005 [3,13], these approaches have been applied with
tensor-product NURBS and Bézier surfaces and demonstrated on a wide range of physical problems from structural
mechanics to fluid-structure interaction problems [14]. These methods also easily support higher order interelement
continuity, allowing for higher than C0 continuous surfaces. The increase in continuity has led to k−refinement, and
demonstrated increased accuracy on structural mechanics problems with quadrilateral and hexahedral meshes [15].
On triangular meshes, these ideas are only beginning to be explored. In 2012, Speleers et al [16] used quadratic
Powell-Sabin splines (NURPS) for advection-diffusion problems on triangular domains and then in 2014, Jaxon and
Qian [17] used rational triangular Bézier splines to represent their two dimensional geometries. With the challenges
of isogeometric analysis on triangles, we focus on an alternative approach for tetrahedral meshes to determine if some
of their benefits can also be obtained, specifically the effect of surface continuity.

Outside of isogeometric analysis, it has been previously determined that certain types of physical applications, such
as electromagnetic scattering and compressible flow applications, are sensitive to both the accuracy and smoothness of
the computational mesh that approximates the curved domain boundaries [4,12]. On most curved tetrahedral meshes,
representations of triangular boundary faces focus on treating each face as an individual curved element, resulting
in C0 continuous surface patches. By considering neighboring boundary faces, continuity of surface normals can
be achieved, described as G1 continuous. G1 geometrically continuous surfaces have been around since 1974 when
Gregory [18] introduced the idea for quadrilateral surfaces. Walton and Meek [19] later developed the triangular
version used in this work, and it has since been extended and applied [20,21] to higher orders for computer graphics
applications. Geometrically continuous surfaces have been used in meshing applications as well, with Owen et al [22]
using them to create a smooth geometry representation from a faceted input in the common geometry module and
Frey [23] using them to support curved surface meshes and provided enhanced geometric information in the absence
of underlying CAD.

In this paper, we introduce a preliminary study of the effects of surface triangle continuity on finite element simu-
lations, comparing a quartic C0 continuous Bézier surface with a quartic G1 continuous surface representation. Our
meshing software [24] is integrated into Nektar++ [25], a high-order finite element solver. A simple pipe flow in three
dimensions is studied and the accuracy is quantified. This work will provide insight into future directions for more
in-depth studies in node placement and curved surface representation as we continue to improve high-order meshes.

2. Curved Meshes

We compare the effect of surface patch continuity using quartic, fourth-order C0 and G1 triangles. Fourth-order
triangles are used for the comparison as it is the minimum order needed for G1 continuity. We obtain C0 continuous
surface triangles using Bézier triangles, defined by the 15 control points [26] in Figure 1. To determine the control
point locations on the CAD geometry, we use interpolating Bézier triangles, first determining interpolation points
using points in the surface parametrization from Chen and Babuška [27] and then solving for the control points. To
construct G1 triangles, we follow the work of Walton and Meek [19]. Their approach results in a G1 continuous
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quartic surface, represented by 18 control points, three more than required for a similar Bézier triangle, as shown in
Figure 1. Geometric continuity is obtained by constraining tangential derivatives across boundary edges. In order to
obtain the required G1 continuity, the cross-boundary tangent fields associated with the three mesh edges have to be
satisfied simultaneously, thus requiring more degrees of freedom than a quartic triangular Bézier patch. As a result,
an additional three control points. Unlike the Bézier triangle, the edges of the G1 triangle are determined using the
the point locations and normals at each vertex to determine the cubic control points. The internal points, are then
determined such that the any two adjoining triangles have a common tangent plane. We refer the reader to [19] for
more details.

In our curved mesh, we use the blending approach of Dey et al [1]. In the conventional isoparametric approach
with C0 meshes, the volumetric mapping between a standard parametric space and the physical space is constructed
based on the same polynomial basis functions used for the finite element space. However, the basis functions used
to represent the rational G1 curved mesh are generally not the same as the finite element shape functions used for
analysis. Therefore, a more general approach is adopted to construct the volumetric mapping in order to account for
the G1 surface geometry. The shapes of lower dimensional mesh entities bounding the element volume are multiplied
with quadratic blending functions, and the contributions are summed together to get the complete volume mapping.

The equation for the mapping is given in Eq (1) as

xi(ξ) = (1 − ξ1)k+1F1(ξ′F1
) + (1 − ξ2)k+1F2(ξ′) + (1 − ξ3)k+1F3(ξ′) + (1 − ξ4)k+1F4(ξ′) − (1 − ξ1 − ξ2)k+1E1(ξ′)

−(1 − ξ1 − ξ3)k+1E2(ξ′) − (1 − ξ1 − ξ4)k+1E3(ξ′) − (1 − ξ2 − ξ3)k+1E4(ξ′) − (1 − ξ2 − ξ4)k+1E5(ξ′)
−(1 − ξ3 − ξ4)k+1E6(ξ′) + ξk+1

1 V1 + ξk+1
2 V2 + ξk+1

3 V3 + ξk+1
4 V4

(1)

where ξ = (ξ1, ξ2, ξ3, ξ4) are barycentric coordinates and Fi, Ei, and Vi are the positions corresponding to the bounding
faces, edges, and vertices. ξ′ defines a normalized parametric coordinate on the edge or face, for example on edge
E1, ξ1 = ξ2 = 0, and ξ′ = (ξ′1, ξ

′
2) =

(
ξ3

ξ3+ξ4
, ξ4
ξ3+ξ4

)
. The blending approach is independent of the chosen face and

edge parametrization and thus can be used with both types of curved faces. The choice of k in the blending functions
determines the smoothness of the blending functions, and it can be shown that this particular volumetric mapping is
Ck continuous. In this work, we use k = 1 for a C1 continuous mapping, though in the future this can be investigated
in more detail.

3. Implementation

Our curved meshes are implemented into Nektar++ [25], a high-order finite element code for solving partial differ-
ential equations. Nektar++ has a wide range of physics implemented, and is a well validated solver to test the effects
of curved meshes. Nektar++ has already been used with curved meshes [8,28] and supports curved meshes defined
by standard interpolation functions, describing curved entities by sets of interpolating points.

To integrate our meshing librares within Nektar++, only several small changes are required. First, the XML based
input format is adjusted to contain information about our mesh and CAD model files, rather than contain the entire
mesh and its connectivity. After the input file is read, our curved mesh and CAD model are loaded, and we overload
the edge, triangular face, and tetrahedron geometry classes to store our mesh entities and query them for geometric
information. The existing curved framework is used with support for deformed elements. This occurs in two places:
first, the coordinates and second, the spatial derivatives. Both are set to call the our API for any edge, face, or
tetrahedral element rather than the original geometric functions.

4. Numerical Results - Hagen-Poiseuille Flow

To test the effect of surface continuity, we solve a Hagen-Poiseuille flow problem for the incompresible Navier-
Stokes. Hagen-Poiseuille flow describes a fully developed, laminar viscous flow through a circular pipe. In this
example, the geometry is a cylinder with unit radius and length 10 in the z-direction. The exact solutions for the
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z-velocity and pressure are

uz(x) = −
1
4ν

(
dp
dz

)
(R2 − r2), p(x) = 1 −

z
10
, r2 = x2 + y2 (2)

with the radial velocities, ux = uy = 0. The kinematic viscosity is chosen to be 0.025 such that the velocity profile is
uz = 1 − r2. The inlet to the pipe consists of the velocity flow profile with the outlet specified by standard Neumann
boundary conditions on velocity, and a pressure of zero. We solve the problem with a fifth order and sixth order
method on mesh consisting of 941 tetrahedra. Geometric accuracy is measured using the maximum interpolation
error on the boundary, a representation of the Hausdorff distance. To measure solution accuracy, the L2, and L∞ norms
of the error, along with the L2 norm of first derivative error, defined as

L2(uh,p) =

(∫
ΩM

(uh,p − uexact)2 dΩM

)1/2

, L∞(uh,p) = max
ΩM

∣∣∣uh,p − uexact

∣∣∣
L2(∇uh,p) =

(∫
ΩM

∇(uh,p − uexact) · ∇(uh,p − uexact) dΩM

)1/2

(3)

are used. A summary of results is in Table 1.
Comparing the interpolation error, the G1 surface is two orders of magnitude higher than that of the C0 surface.

This is expected, as the control points are used to ensure G1 continuity rather than directly interpolate the surface.
Comparing the errors in x-velocity, the C0 method outperforms the G1 method (and does so for both other velocities).
Examining the error in pressure, for both the fifth and sixth order method, the L2 norm is smaller for the C0 meshes,
however both the L∞ norm of solution error and L2 norm of the derivative error are smaller, suggesting G1 continuity
may improve the accuracy of derivatives and engineering quantities such as shear stresses. For the G1 continuous
surfaces, the effect of increased surface continuity appears to be mitigated by the larger interpolation error, resulting
in a minimal increase in solution accuracy as we go from fifth to sixth order. This is consistent with previous results
using Nektar++ [29].

Table 1. Summary of Results for Hagen-Poiseuille Flow, Error in x-velocity and pressure.

p Interp. Error L2(uh,p) L∞(uh,p) L2(∇uh,p) L2(ph,p) L∞(ph,p) L2(∇ph,p)

C0 5 1.19 × 10−5 2.14×10−4 8.57 × 10−4 6.34 × 10−3 1.71×10−3 2.40 × 10−2 5.50 × 10−2

G1 5 6.32 × 10−3 1.22×10−3 1.67 × 10−3 1.36 × 10−2 4.51×10−3 5.25 × 10−3 2.75 × 10−2

C0 6 1.19 × 10−5 8.12×10−5 3.10 × 10−4 2.43 × 10−3 4.40×10−4 6.85 × 10−3 2.12 × 10−2

G1 6 6.32 × 10−3 1.21×10−3 1.65 × 10−3 1.30 × 10−2 4.47×10−3 4.61 × 10−3 1.77 × 10−2

These results do not demonstrate an obvious advantage to G1 continuity of the mesh. The potential benefits of
surface continuity are outweighed by the additional effort in their formulation. While Bézier triangles can be naturally
extended to arbitrary order, obtaining fifth-order G1 triangles is non-trivial [20,21], and sixth order and higher for-
mulations do not currently exist. Given the control points of a higher-order surface triangle, using the control points
to reduce interpolation error or improve other aspects of mesh quality instead of increasing the level of interelement
appears to be the appropriate option. In the absence of CAD geometry, there may be more interest in G1 continuity,
however if the CAD geometry is available, it is likely not advantageous.

5. Conclusions and Future Work

In this paper, the effects of C0 continuity compared to G1 surface triangle continuity for curved tetrahedral meshes
are examined. For a simple flow problem, meshes with fourth order G1 continuous surface patches do not significantly
improve solution accuracy compared to similar fourth order C0 continuous patches. The increased interpolation error
of G1 triangles appears to outweight the potential benefits. As geometric continuity is far from the only factor at play,
further work is needed to study relevant metrics such as the scaled Jacobian for optimal control point locations to
improve solution accuracy.
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The next step is to determine whether G1 is worth pursuing further by applying it to more problems and examining
its effect on forces, stresses, and other engineering quantities. If there is shown to be a significant advantage, fifth order
and higher G1 triangles will be investigated. This will allow for investigation of their effects on highly anisotropic
problems, such as boundary layer problems.

Additional developments of importance for high order curved meshes simulations include improvements to the
algorithms for adaptive mesh refinement, coarsening, swapping in combination with mesh entity reshaping opportu-
nities afforded when using high order mesh geometry.
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